
. - -

’ NASA
TP
1200

. c.1
4 . 2

,

NASA Technical Paper 1200

f

User’s Guide for SFTRAN/llOO
,

,

/
,

William F. Ford and Theodore E. Fessler

’ APRIL 1978 .

NASA

. .

TECH LIBRARY KAFB, NM

0334557

NASA Technical Paper 1200

User’s Guide for SFTRAN/llOO

William F. Ford and Theodore E. Fessler
Lewis Research Center
Cleveland, Ohio

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1978

USER'S GUIDE FOR SFTRANlllOO

by W i l l i a m F. Ford a n d Theodore E. Fess ler

Lewis Research Cen te r

SUMMARY

Extensions and improvements have been made to SFTRAN, a structured-
programming language. This improved language has been implemented as a precompiler
that translates from SFTRAN to FORTRAN. It has been available to batch and conver-
sational users of the Lewis Research Center's UNIVAC 1100 computer system for the
past year. This report describes the SFTRAN language and its use.

Conversational Time -Sharing System (CTS) command subroutines have been imple -
mented that eliminate the complications of dealing with extra files and processing steps
that the use of a precompiler would otherwise require. These command subroutines are
described and their use is illustrated by examples.

INTRODUCTION

In recent years, two new programming concepts have received a good deal of atten-
tion in the literature. The first of these may be loosely termed "GO-TO-less program -
ming, although a more appropriate description might be "avoidance of numbered state-
ments. ? ' When this concept is employed, program flow is controlled by constructs, or
structures, that imply a certain flow-chart function; the name given each construct is
suggestive of its function. A principal benefit of GO-TO-less programming is that the
resulting code is easier to read, both because the structure names are more meaningN
than numbers and also because the reader's eye is not forced to leap around on the page
or from one page to another.

the process of successively refining one's description of the solution method in terms of
ever -more-primitive components or processes. At each level of refinement, only
enough detail is presented to make the method clear. Anything of a complicated nature
is merely referred to, with its precise definition postponed until later. Sometimes
called top-down programming, this technique also results in an easier-to-read code.

The second concept involves what has been referred to as "stepwise refinement, l 1

Only a few ideas need be kept in mind at each level of description; and the big, important
ones can be put first, at the top, where they belong.

The combination of these two principles, GO-TO-less programming and stepwise re-
finement, results in what we will denote as "structured programming. '* The combined
technique has more to offer, however, than merely good readability. It also provides a
natural sequence of steps to be taken in the programming process: It replaces much of
the art of programming with a methodology that is easy for the novice to learn and very
efficient in the hands of the experienced. Also, a high degree of program modularity is
obtained, which means that the code produced can easily be changed, extended, or
adapted for other uses.

This report concerns a new implementation of the programming language SFTRAN,
1 which was created by John T. Flynn for the specific purpose of providing a language

suitable for structured programming. Flynn's implementation of his SFTRAN language
was a precompiler that translated from SFTRAN to FORTRAN. This permitted a great
degree of simplification in the precompiler program: It only had to recognize the few
special structures that control program flow. Also, by translating to FORTRAN, the
benefits of program portability were automatically obtained.

Our work retains all of Flynn's original structures. The new SFTRAN precompiler
differs from Flynn's in that it has been given additional language features, has had some
operating limitations removed, and has been designed to run more efficiently. This re-
port describes the SFTRAN language and its use, as newly implemented.

Our effort, however, goes beyond refinement of an existing precompiler. We extend
the concepts of modularity and topdown development to the area of task management and
provide a set of command subroutines for this purpose. Thus, the programmer is able
to select one of several jobs, and one of several parts of that job, and to invoke one of
several operations to be performed on that part. This can all be done by means of s im-
ple, brief statements designed expressly for the purpose. The programmer is thus
freed of concern for bothersome details of an operational nature and can instead con-
centrate his attention on those areas where his skill and effort are of maximum benefit.
These task-management subroutines, as implemented on the Lewis Research Center's
UNIVAC 1100 computer system, are described in this report. Examples of their use are
included.

SFTRAN LANGUAGE

In brief, SFTRAN (Structured ForTRAN) is a programming language with the follow- - - -
ing. features:

'SFTRAN User Guide, JPL Interoffice Computing Memorandum 337 (Section 914),
July31, 1973.

2

(1) It eliminates the burden of dealing with statement numbers. Program sections
a re referred to by name, not number.

(2) It allows and even encourages the grouping of instructions into small , natural
units within a program or subprogram. These units can be given unique, descriptive
names and are displayed in listings in a manner that makes their internal structure im -
mediately apparent to the eye.

(3) It looks very much like ordinary FORTRAN, except for the manner in which
branching and looping are handled.
The SFTRAN language is implemented by a precompiler that generates FORTRAN source
code from SFTRAN source code. SFTRAN programs can therefore be considered ma-
chine independent to the same degree that their FORTRAN translations are machine
independent .
TO statements of FORTRAN are the following:

The basic structures by means of which SFTRAN avoids the GO-TO or implied GO-

DO -PROCEDURE

IF -THEN

IF -THEN-ELSE

DO-CASE

DO -FOR

DO-UNTIL

DO-WHILE

DO-WITH

The first structure refers to the PROCEDURE, a group of statements of any kind to
which a unique name is given.
length, with embedded blanks, special symbols, etc. , if desired, and is the only means
by which the group of statements may be invoked. The PROCEDURE thus operates very
much like a baby subroutine within the program body, except that it can refer to any of
the variables of the program.) The remaining seven structures provide commonly re-
quired types of program control, in which some sort of decision-making is performed.

One feature of the SFTRAN precompiler is the option to automatically assign state-
ment numbers to normal SFTRAN output, flagging the various SFTRAN statements.
Also, statement numbers that were supplied by the programmer in order to flag normal
FORTRAN statements can be stripped off by the precompiler or left intact, as desired.
(These statement numbers make it possible to debug directly from the SFTRAN code.
The FORTRAN code produced by the precompiler is unsuitable for this, because it is

(This name may and should be descriptive, of arbitrary

3

hard to read.) Later on, when the programs a re in good shape and clean text is desired,
the SFTRAN precompiler can be invoked again, with these options reversed, to produce
the final listings.

Programming in SFTRAN

Any group of statements and structures, providing it has only one entrance and one
exit, can be designated as a single structural entity. This is accomplished in SFTRAN
by means of the PROCEDURE declaration, which assigns a unique, descriptive name to
the entity. At any point or points within the program, this entity can be invoked and
executed by using the DO-PROCEDURE statement. The process of creating arbitrarily
complex code, therefore, becomes one of organizing an appropriate assembly of concepts
whose functions are indicated by their names but whose precise definition is deferred un-
til the necessary level of detail is reached.

In those regions of a program where the flow of commands is not purely sequential,
some sort of transfer is required. The transfer may be lateral, as when one of several
alternatives must be selected and performed; or it may be backward, as when a block of
instructions must be repeated a number of t imes. These cases are termed branching and
looping, respectively.

cision whether or not to perform it. In SFTRAN this is accomplished by means of the
structure IF -THEN. When there are two alternatives, the modification IF -THEN-ELSE
may be used. For more than two alternatives, a different form of structure, the DO-
CASE, is available.

The simplest form of looping involves repeating a block of instructions a certain
number of times while an index is incremented. In SFTRAN this is accomplished by
means of the structure DO-FOR. In more general cases the block must be repeated until
a certain condition is attained or while a certain condition holds; these forms of looping
are implemented by the DO-UNTIL and the DO-WHILE structures, respectively. Still
more general cases a re treated with the DO-WITH structure, in which the condition test
(either UNTIL or WHILE) may be placed anywhere within the block to be repeated.

Once the branching and looping structures have been defined, any program, no mat-
ter how complex, can be reduced to a set of simple structures each of which has only one
entrance and one exit. As such, the structures are comparable to the simple statements
that form sequential code.

The simplest form of branching involves only one block of instructions and the de-

4

Basic Structures

Each SFTRAN structure is delimited by a keyword statement that marks its begin-
ning and an END statement that marks its completion; other keyword statements may
occur between these two. The keyword statements and the END statement form the
skeleton of the structure.

freely by the programmer. For clarity, the body of a structure is indented in the output
listing (but not the source) relative to the skeleton of that structure. (This principle con-
tinues to hold even when one structure forms part of the body of another structure.)

has only one entrance and one exit, may be designated as a single structural entity called
a PROCEDURE. Its beginning is indicated by a keyword PROCEDURE statement, and its
finish by an END statement. The keyword statement also contains the name assigned to
the PROCEDURE - a string of characters contained within parentheses. An example of
such a structure is

The remaining statements comprise the body of the structure and may be chosen

DO-PROCEDURE. - Any set of sequential statements and structures, providing it

PROCEDURE (VECTOR PRODUCT: A (1) = B (1) X C (1))
A (1 , I) = B (2 I) *C (3 , I) -B (3, I) *C (2 ,I)
A (2 I =B (3 I) *C (1 , I) -B (1, I) *C (3 , I)
A (3 , I) = B (1 , I) *C (2 , I) - B (2 ,I) *C (1,I)

END

In this example the PROCEDURE name is chosen to be as descriptive as possible. The
name may be any length; all characters, including blanks, a re significant. But PRO-
CEDURE names should not contain apostrophes or unmatched (left with right)
parentheses .

Loosely speaking, a PROCEDURE may be regarded as a subprogram that is internal
to the program o r subprogram in which it appears. It is called from another point in the
same program by a Do-PROCEDURE statement; for the preceding example,

DO (VECTOR PRODUCT: A (1) = B (1) X C (1))

There are a few simple rules governing the use of PROCEDURES. To begin with, the
keyword PROCEDURE statement must stand alone; it cannot be defined within another
structure. It must have no means of entry except for calls by DO-PROCEDURE state-

5

ments; these DO statements are only effective within the program or subprogram in
which the PROCEDURE is defined.

PROCEDURE definition. For this reason, a PROCEDURE name may appear in only one
keyword PROCEDURE statement; it may appear more than once in DO-PROCEDURE
calls, but it must appear at least once. Finally, although the body of a PROCEDURE
may be made up of other SFTRAN statements and structures, including calls to other
PROCEDURES, it may not call itself either directly or indirectly; PROCEDURES do not
have recursive capability. The SFTRAN precompiler does not check this; it is the pro-
grammer's responsibility to ensure that recursive calls will not occur.

IF-THEN. - The simplest form of branching is the IF-THEN structure, whose flow
diagram is

The name in a PROCEDURE call must be exactly the same as the name in the

. TRUE.

. FALSE.

An example of IF-THEN coding is

I F (.NOT. FOUND) THEN
DO (=PORT M I S S I N G ITEM)
STOP

END

Statements to be
executed only i f
logical expression
is .TRUE.

(Of the two statements forming the body of the IF-THEN structure, the first is an
SFTRAN-type statement and the second is a FORTRAN-type statement.) An abbreviation
of this structure is possible whenever only one statement is contained in the conditional
block. For example, instead of

6

IF (.NOT. FOUND) THEN

END
DO (REPORT MISSING ITEM)

the abbreviation

IF (.NOT.FOUND) DO (REPORT MISSING ITEM)

may be used. Note that THEN and END are omitted in the abbreviated version, an ex-
ception to the general rule that every structure begins with a keyword and ends with an
END statement.

IF-THEN-ELSE. - When branching involves two alternatives, the structure IF-
THEN-ELSE may be used. Its flow diagram is

. FALSE. .TRUE.

t
Statements to be
executed only if
log ica I express ion

I
Statements to be
executed only if
log ica I expression
is .TRUE.

An example of IF-THEN-ELSE coding is

7

IF (1.EQ.J) THEPl
DO (I=J CASE)
CALL SUBl(X,Y,Z)

DO (NORMAL CASE)
CALL SUB2 (X,Y,Z)

ELSE

END

The statements to be executed if LOGIC is . TRUE. come right after the IF-THEN key-
word statement; the statements to be executed if LOGIC is . FALSE. come right after the
ELSE keyword statement. In either case, program flow then passes to the first state-
ment following the structure's END statement.

DO-CASE. - When branching involves more than two alternatives, the DO-CASE
structure may be used. Here the alternative to be chosen is determined by examining an
integer variable rather than a logical variable. The flow diagram of the DO-CASE struc-
ture is

N = 1 N = last

be executed i f N -1

I

An example of DO-CASE coding is

8

DO CASE (I T Y P E , 3)
CASE 1

POLY=A*X+B
CASE 2

POLY=A*X**2+B*X+C
CASE 3

DO (NOT LINEAR OR QUADRATIC)
I F NONE

DO (REPORT TYPE ERROR)
END

The case-choice and the case-limit appear in the keyword DO CASE statement. The
definitions of each possible case form the body of the structure, separated by keyword
CASE N statements. As usual, an END statement marks the completion of the structure.

The case-choice must be a nonsubscripted integer variable; and the case-limit must
be a positive, literal, integer constant. The number of keyword CASE N statements
must be equal to the case-limit, and they must be given in sequential order, beginning
with CASE 1. Each case definition follows its own keyword CASE N statement; even if
a definition is null, containing no statements, the keyword CASE N is required.

greater than the case-limit), control will pass to the next statement after the END of the
DO-CASE structure unless an IF NONE contingency case is provided. If an IF NONE
case is provided, it must follow the last case in the structure.

a certain number of times, while an index is incremented. This is accomplished by
means of the DO-FOR structure, whose flow diagram is

If the case-choice is not within range of the number of cases defined (less than 1 or

DO-FOR. - The simplest form of looping involves repeating a block of instructions

Initialize index +
Statements to be

Increment index 6 $F-’ Done ?

9

An example of DO-FOR coding is

DO FOR 1=2 ,N,2

END
X(I)=Y(I)+Z (I)

In this example, X(1) will be calculated for al l even values of I from 2 to N; then con-
trol will pass to the statement following the structure's END statement. Initialization,
incrementing, and testing are implied by the structure and are not explicitly programmed.

The general form of the DO-FOR statement is

DO FOR I=Nl,N2,N3

where I is the index and N1, N2, and N3 a re the initial, terminal, and increment param-
eters, respectively. The index of a DO-FOR must be an integer variable and may not be
redefined within the body of the DO-FOR structure. The SFTRAN precompiler does not
check this; it is the programmer's responsibility to ensure that such redefinitions do not
occur.

The DO-FOR parameters determine the initial value N1, the increment value N3,
and the number of times (N2-N1)/N3+1 that the body of the DO-FOR structure will be
executed. These parameters may be literal integer constants, integer variables, o r
integer expressions. A complicated example would be

DO FOR I N D E X = 0, IFUPJC (X) +J*K, -NUN

Variables appearing in N1, N2, and N3 may be changed during execution of the statements
contained within the DO-FOR structure with no effect; only their values at the start are
used to control indexing. If N3 is omitted, its value is assumed to be 1 (unless N1 and
N2 are literal constants and the value of N1 is greater than that of N2, in which case N3
is assumed to be -1).

Recapitulating, the DO-FOR structure is executed as follows:
(1) The index is initialized to the value of N1.
(2) The values of N2 and N3 are saved.
(3) The statements contained in the body of the DO-FOR structure are executed.
(4) The index is increased by the value of N3.
(5) If N3* (N2 -I) is negative, the DO-FOR is completed. Otherwise, steps 3 to 5

are repeated.

10

When a DO-FOR structure is completed normally (by step 5), the value of the index is - not
the same as it was during execution of the body of the structure (in step 3) the last t ime.

DO-WHILE and DO-UNTIL. - In more general cases of looping, the block of state-
ments must be repeated until a certain condition is attained, o r while a certain condition
holds. In SFTRAN these a re accomplished by means of the DO-UNTIL and DO-WHILE
structures, respectively. Their flow diagrams are

-

DO WHILE:

t
P I

DO UNTIL: +

executed if not
done yet

t
$! ! I M o r e ?

An example of DO-WHILE coding

DO WHILE (N.GT.0)
DO (PROCESS N-TH ITEM IN LIST)
N=N-1

END

executed before

?."- Done ?

(In a DO-WHILE the logic test is made at the start, to determine if conditions for looping
are allowed. Hence, if N should be 0 at the start, control will pass immediately to the
statement following the structure's END statement.)

11

An example of DO-UNTIL coding is

VALUE=GUESS
DO UNTIL (TERM. LE. SMALL)

DO (CALCULATE HIGHER-ORDER TERM)
VALUE=VALUE+TERM

END

(In a DO-UNTIL the logic test is made at the end, to determine if looping is to continue.
Hence, TERM, the first correction to GUESS, will be calculated and added before being
examined to see whether it is SMALL enough to discontinue looping.) It is quite possible
to program an infinite loop, in which the completion test is never satisfied. The SFTRAN
precompiler cannot check this. It is the programmer's responsibility to avoid infinite
loops.

DO-WITH. - In more general cases of looping it is desirable to have the completion
For these cases the DO-WITH test take place other than at the start or end of the loop.

structure is available, whose flow diagram is

executed before

1

Add i t iona I statemen ts
to be executed i f
no t done yet

t

12

An example of DO-WITH coding is

ITEM=1
DO WITH

UNTIL (MATCH .OR.ITEM.EQ.LAST)
DO (CHECK FOR MATCH WITH STANDARD VALUE)

DO (PROCESS NON-MATCHING ITEM)
ITEM=ITEP~+~

EPJD
IF (.NOT.MATCH) DO (REPORT MISSING ITEM)

In this case, the DO-WITH completion test is indicated by the keyword UNTIL statement.
A WHILE statement could also have been used. For the UNTIL test, a .TRUE. value
signals completion of the looping. For the WHILE test, a . FALSE. value signals com-
pletion. In either case, one and only one WHILE/UNTIL statement may be used in the
DO-WITH structure, but it may be placed anywhere within the body of the structure.

Additional Forms

The basic structures just defined are more than adequate to describe even the most
complex program flow. But, because of its FORTRAN origin, SFTRAN has been given
three additional forms: READ and WRITE parameters, EXITS from a DO-FOR, and
INCLUDE and DEFINITION.

tain END and/or ERR parameters, just as they do in FORTRAN. In SFTRAN, however,
these parameters set logical variables instead of causing control transfers. For ex-
ample, the statement

READ and WRITE parameters. - READ and WRITE statements in SFTRAN may con-
~~

READ (UNIT,FMT,DONE=END) LIST

will read into LIST from UNIT according to the format specified in FMT. If an end-of-
file is encountered, the logical variable DONE will be set to . TRUE. ; otherwise, DONE
will be set to . FALSE. The following example is part of a main program that makes use
of this feature:

13

DO WITH

UNTIL (DONE)
READ (5,100 ,DONE=END) DATA

DO (PROCESS ALL DATA IN THIS GROUP)
DO (PRINT RESULTS OF PROCESSING)

EPJD
STOP

To illustrate the use of the ERR parameter, suppose that the READ statement in
this example is replaced by

READ (5,10O,DONE=END,SCREW=ERR) DATA
IF (SCREWY) THEN

KIND=4
DO (ERROR HANDLING ROUTINE)

EPJD

The program will operate just as before, unless an e r ror is encountered at READ time.
In that event, SCREWY will be set to . TRUE. , and then the procedure ERROR HANDLING
ROUTINE will be invoked for KIND=4. (If no READ er ror is encountered, SCREWY will
be set to . FALSE.)

one entrance and one exit. Like most generalities, this admits of an exception: the
EXIT statement. The EXIT statement, which may be used only in connection with a DO-
FOR structure, has been added to give that structure the feature of having a completion
test within the body of the structure. In this respect it is similar to the UNTIL o r WHILE
statements of the DO-WITH structure. For instance, the statement

EXITS from a DO-FOR. - It has been stated that every SFTRAN structure has only

IF (EQUAL) EXIT

in a DO-FOR structure is roughly analogous to the statement

UNTIL (EQUAL)

in a DO-WITH structure. The EXIT statement, however, possesses a -2ature that makes
it much more powerful than UNTIL/WHILE statements: it can optionally include.the name
of a DO-FOR structure index, in parentheses, to cause EXIT from that DO-FOR struc-
ture. In this respect, it furnishes a means of unconditional transfer out of a nest of
structures.

14

Consider, for example, the following SFTRAN code:

DO FOR ITEM=l,LAST
DO (GET DATA ITEM AND ALL 5 STANDARD VALUES)
DO FOR KIND=1,5

DO (CHECK FOR MATCH WITH THIS KIND OF STANDARD)
IF (MATCH) THEN

DO (PROCESS MATCHING CASE)
<-----EXIT (KIND)

END
DO (PROCESS NON-MATCHING CASE)

END
END

When a MATCH is found, it is processed and then control is transferred out of the IF-
THEN structure to the first statement following the END statement of the DO-FOR struc-
ture with index name KIND. For clarity, this is indicated in the output listing (but not
the source) by a left-going arrow. (The alternative structure

IF (MATCH) THEN
DO (PROCESS MATCHING CASE)

<-----EXIT (KIND)
ELSE

END
DO (PROCESS NON-MATCHING CASE)

is nominally correct, but its ELSE block is clearly unnecessary.
form is not allowed, and the precompiler is programmed to regard it as an error .
the section Comments.)

some sort. The question then arises, What about the possibility that no EXIT has oc-
curred by the time the loop is finished? Without a special provision, control would pass
to the next statement following the appropriate END statement - just as if an EXl" had
occurred. To handle this situation, SFTRAN provides the keyword OTHERWISE (again,
to be used only in the DO-FOR structure). The flow diagram for a DO-FOR with an EXlT
and an OTHERWISE is

Consequently, this
See

In any event, it is obvious that the EXIT statement will be associated with a test of

15

I
I

1

t
0-

Statements preceding
the EXIT test

r - 3 EXIT? r - 3 EXIT?

Statements following
the EXIT test

$?- Done ?

Statements to be used

-0

An example of DO-FOR coding with an EXIT and an OTHERWISE is

DO FOR I<IND=1,5
DO (CHECK FOR MATCH WITH T H I S KIIJD O F STANDARD)

DO (PROCESS NON-MATCHING CASE)
<--IF (MATCH) E X I T

OT HE RW I S E
DO (REPORT NO MATCH FOUND)

END

16

In this case, the procedure REPORT NO MATCH FOUND will be executed if the item
matches none of the standards. Normally, however, a match will be found, and control
will be transferred out of the DO-FOR s t r u c b e . (The optional, abbreviated version of
EXIT has been used that omits THEN and END, and the index name KIND has been
omitted because exit is from the immediate structure.)

INCLUDE and DEFINITION. - FORTRAN compilers often require that certain
classes of statements appear in the program before certain other classes of statements.
(For example, function definition statements must appear before any executable state-
ments.) In SFTRAN, the INCLUDE statement provides a way to specify where a block of
statements, defined elsewhere in a DEFINITION structure, is to be located in the
FORTRAN output from the precompiler.

of statements without spelling them out. Thus, he can express main ideas at the top of
the program without the clutter of detail, best left until later.
statements and PROCEDURE blocks, INCLUDE statements are related to their corre-
sponding DEFINITION blocks by a unique (hopefully descriptive) name. An example of
the INCLUDE statement is

The INCLUDE statement allows the programmer to indicate the presence of a group

A s with DO-PROCEDURE

INCLUDE (TYPE STATEMENTS, ETC.)

C.....MAIN FLOW:
DO (INITIALIZE PROGRAM)
DO WITH

UNTIL (DONE)
READ (5, INPUT ,DONE=END)

DO (FIRST-ORDER CALCULATION)

Then, at another point in the program, perhaps at the bottom, would be

DEFINITION (TYPE STATEMENTS, ETC.)
LOGICAL DONE
REAL X(25) ,Y (25)
NAMELIST /INPUT/ X,Y,NXY

END

17

In the FORTRAN output from the precompiler, the statements LOGICAL --, REAL --,
and NAMELIST -- will appear in place of the INCLUDE statement, and the DEFINITION
and END statements will not appear.

There a re a few rules governing the use of INCLUDE and DEFINITION statements.
DEFINITION statements must stand alone; they cannot be contained in any other struc-
ture. INCLUDE statements must not be contained in DEFINITION blocks (because they
cannot be nested). The names of INCLUDE and DEFINITION statements should not con-
tain apostrophes or unmatched (left with right) parentheses. And names must match ex-
actly; each name must appear only twice, once in an INCLUDE statement and once in a
DEFINITION statement.

Comments

As noted, the EXIT statement requires special attention because it can cause uncon-
ditional transfer out of a structure (other than at its normal END). There are also two
common, allowable FORTRAN statements that possess this characteristic: RETURN and
STOP. The rules governing the use of EXlT, RETURN, and STOP within structures are
as follows:

(1) They may be used in IF-statements.
(2) They may be used alone as the last statement in an IF-THEN structure, an

OTHERWISE block of a DO-FOR structure, or a CASE or IF-NONE block of a DO-CASE
structure.

(3) No other use within structures is allowed.
Occasionally, errors in form or spelling may cause the SFTRAN precompiler to

pass over statements (thinking them to be FORTRAN) when the programmer had intended
them as SFTRAN. The FORTRAN compiler will, of course, complain about these, and
the programmer should then be able to determine what caused the precompiler to ignore
the statements in the first place.

Normally, nonexecutable statements are placed at the start of a program, either
directly or by means of an INCLUDE statement. When they are not, the SFTRAN pre-
compiler may assign a statement number to one or more of them. This is reported as
an error by the compiler.
cutable statements.) One way to fix this is to insert a CONTINUE statement just ahead
of any nonexecutable statements that were labeled and to precompile again.

FORTRAN V compiler to the ASCII FORTRAN compiler, or conversely, because of the
differences between these FORTRAN dialects. For example, COMPLEX* 16 and
CHARACTER variable types are permitted in ASCII FORTRAN but not in FORTRAN V;
characters a re stored six to a word in FORTRAN V but four to a word in ASCII FORTRAN.

(Most FORTRAN compilers do not allow labels on nonexe-

Some changes in an SFTRAN code may be required when changing from the

18

These and other differences between the two languages are more completely described in
the ASCII FORTRAN programmer manual (ref. 1).

Finally, SFTRAN does not permit free-form coding. Columns 1 to 5 a re reserved
for statement numbers (except in comment lines), and column 6 is reserved for a con-
tinuation character. (Hyphens should not be used to indicate that a statement is con-
tinued on the following line.) Statement scanning begins in column 7; any initial blanks
will be regarded as relative indenting and will be preserved by the precompiler. The
SFTRAN precompiler uses only the first 72 columns of each line.

TASK MANAGEMENT SYSTEM

For the following discussion, it is essential that the reader be familiar with the
UNIVAC 1100 ser ies Conversational Time Sharing System (CTS) and also its pro-
grammer's reference manual (ref. 2). The command subroutines and file organization
described here supplement the commands that a r e a part of CTS; they do not replace
them. The task-management commands a re summarized in appendix A. These new
commands provide the following features:

(1) They greatly simplify the management of several jobs under one PROJECT ID
and at the same time make it easy for several programmers to work as a team on one
job.

environments without the need to assign this work to an individual.

Only standard features of task and data management a re required.

modes.
It is recommended that a single program file be used for source code, for relocatable
code, and for listings. The command subroutines, which assume this organization, a r e
provided to simplify task management.

To illustrate the method, suppose that the assignment is to analyze sonic booms and
that the programmer has written a main program (MAIN) and two subroutines (INPUT and
OUTPUT), all in SFTRAN. The first step is to put MAIN, INPUT, and OUTPUT into the
program file, called (say) SONIC-BOOM (or any other name the programmer likes).
That is, SONIC-BOOM is created with elements MAIN, INPUT, and OUTPUT. The
W A C 1100 program -file organization provides an excellent filing scheme. The next
step is to make relocatable elements corresponding to MAIN, INPUT, and OUTPUT.
Suppose the programmer begins with MAIN, invoking the SFTRAN precompiler. This
would produce two new file elements, one for further processing and one for listing
purposes.

(2) They provide all of the library functions essential in multijob, multiprogrammer

(3) They make full use of, and a r e fully compatible with, UNIVAC's CTS facilities.

(4) They provide features that a r e equally available in either conversational or batch

19

The first element, called TPF$. MAIN, is the FORTRAN version of MAIN and is
ready for processing by the FORTRAN compiler. Mer compilation, the resulting re-
locatable code will be put into the program file as relocatable element MAIN. (The
UNTVAC 1100 system file-naming conventions permit both source element MAIN and re-
locatable element MAIN to be in the same file.)

The second element produced by the precompiler has been put into the program file
as element MAIN$L. The latter is an SFTRAN version of MAIN that has been indented
to reveal how the structures a re nested. (In SFTRAN, statement text is assumed to be-
gin in column 7, except for comment statements. If leading blanks do occur beginning in
column 7, these will be preserved by the precompiler as additional indentation, relative
to that showing structure nesting.)

job. In the present case, for example, a Bessel function subroutine like BESORD might
be required and could be stored in SONIC-BOOM as element BESORD$F. The $F suffix
on BESORD$F would identify it as a FORTRAN-language element.

Occasionally, the need arises to save a FORTRAN source element for a particular

C om m and Subroutines

A number of command sabroutines have been provided to assist in creating and
managing the SFTRAN program file:

JOB EDITLIB EDPRINT
SFTRAN ERASELIB PARAM
FORTRAN LISTINGS DEFAULT
COLLECT PRINTLIB

(They have been grouped according to their functions: processing, editing and listing,
and miscellaneous.)

either from SFTRAN-language program -file elements, by using command SFTRAN, or
from FORTRAN-language program -file elements, by using command FORTRAN. Re-
locatable elements a re collected to build an absolute element by using command
COLLECT. Elements of the program file may be created and edited by command
EDITLIB; when a given program is no longer needed, source, relocatable, and listing
elements are removed from the program file by command ERASELIB, Batch prints of
indented source-code listings produced by the SFTRAN precompiler a re obtained by com -
mand LISTINGS; batch prints of original, unprocessed program -file elements may be ob-
tained by command PRINTLIB.

Task selection is accomplished by command JOB; relocatable elements a re created

20

Batch prints of a file or file element a re ordered by command EDPRINT if the first
character of each record is to be used for printer control. The PARAM command sub-
routine implements keyword and positional operand evaluation for the SFTRAN command
subroutines described and can also be used in user -developed command subroutines.
Default values for operand keywords a re set by the command DEFAULT.

A summary of the commands and their operands is given in appendix A.

issues a command such as

In this section, examples a re given to show how the command subroutines are called.

- JOB. - At the start of each task creation and management session, one normally

CALL JOB SONIC-BOOM

This sets up file assignments and default values so that subsequent commands refer to
the correct file elements. In addition to defining the program file, the JOB command
may also be used to establish standard operating procedures. For example, one might
enter

CAJLL JOB SONIC-BOOM, NUMBER=Y,STRIP=Y,OFFLINE=Y

These additional operands require that (unless otherwise specified, when command sub -
routine SFTRAN is called)

(1) The various elements of SFTRAN structures be numbered on all SFTRAN listings
(2) Programmer -supplied statement numbers be stripped from all SFTRAN listings
(3) Error messages and their line numbers go offline to the SFTRAN listings, not to

the terminal
(Normally, the internally generated statement numbers are not shown, programmer -
supplied statement numbers a re not stripped, and error messages appear at the
terminal.)

Another version of the JOB command might be

CALL JOB SONIC-BOOM, FORTRAN=N,LISTING=Y,LINES=Y

These additional operands require that (unless otherwise specified, when command sub -
routine SFTRAN or command subroutine FORTRAN is called)

(1) FORTRAN source data sets created by the precompiler are not to be compiled
(2) A listing of indented SFTFUN output (or a FORTRAN listing in the event that

command subroutine FORTRAN is used) is to be printed for each member
processed by the SFTRAN command subroutine

(3) Line numbers a re to be included in listings
(Normally, the FORTRAN compiler will be called if no precompiler e r ro r s a re detected,
SFTRAN output listings a re not printed since they may not be the final version desired,
and listings are normally printed without line numbers.)

Any combination of these operands may be used when JOB is invoked. The choices

21

I

specified then hold for all subsequent processing during that terminal session, unless
revoked by another JOB command (or temporarily overridden by a particular SFTRAN
or FORTRAN call).

Another example of the JOB command might be

CALL JOB SONIC-BOOM, COMPILER='FTN,SO'

The COMPILER operand allows the user to specify the FORTRAN compiler and its op-
tions that will be used in subsequent SFTRAN or FORTRAN commands. (Unless speci-
fied, the assumed compiler is 'FTN,SF'; the ASCII FORTRAN compiler with option S
for source-code and error-message listing and option F for postmortem walk-back and
dump capability will be used.) Quotes are required around the COMPILER operand value
because of the comma in the value string.

READKEY, which limits read access to those who know the key, or a WRITEKEY, which
limits write access. The JOB command has operands to accommodate these keys. For
example, suppose that a new program file, MY-LIB, is to be created. The command

At times it may be desirable to limit access to a program file by attaching a

CALL JOB MY-LIB, WRITEKEYzXYZ

will create the file MY-LIB with WRITEKEY 'XYZ'. Once this file has been freed (by
calling JOB again, or when the task is terminated), MY-LIB will be write-protected.
That is, it will not be possible to alter or erase MY-LIB without first giving the
WRITEKEY combination ' X Y Z ' . If MY-LIB already exists when the JOB command is
issued, the WRITEKEY value is compared with that on MY-LIB for validity and, if cor-
rect, the user is enabled to update the file. In this way, one can conveniently obtain
protection against accidental destruction of a program file or any of its elements. The
READKEY operand is used similarly to obtain file privacy.

SFTRAN, that a r e stored in a particular program file. First, each element is precom -
piled, creating SFTRAN output for listing and a FORTRAN source element; then (depend-
ing on defaults) the SFTRAN output is printed and the FORTRAN source element is
compiled.

been issued previously, and there a re two elements to process. These a re stored in the
program file as elements MAIN and SEARCH. Then, to begin processing, enter

SFTRAN. - The command SFTRAN is used to process source elements, written in

Suppose, for example, that the JOB name is SONIC-BOOM, the JOB command has

CALL SFTRAN MAIN,SEARCH

If no precompiler e r ro r s o r compiler e r rors a r e detected, the user will eventually be
prompted for more commands. When this has happened, the following elements will have
been created:

22

SONIC-BOOM.MAIN$L
SONIC-BOOM. SEARCHSL
TPF$.MAIN
TPF$.SEARCH

The first two are indented SFTRAN output produced by the precompiler and may be
printed using LISTINGS. The second two are FORTRAN source elements, in temporary
program file TPF$, which are used by the FORTRAN compiler to create relocatable
elements MAIN and SEARCH in the program file.

If the precompiler detects errors , messages will appear at the terminal (unless
OFFLINE=Y is specified when the JOB o r SFTRAN command is issued) and the FORTRAN
compiler will not be invoked.
e r rors will be reported. Details of these e r ro r s can be obtained by using the CTS editor
to examine the working area f , which at this point contains the FORTRAN compilation
listing.

If the FORTRAN compiler detects errors , the number of

Other forms of the SFTRAN command are possible, such as

CALL SFTRAN PIAIN,SEARCH, NUMBER=Y,STRIP=Y,OFFLINE=Y

or

CALL SFTRAN MAIN,SEARCH, LISTING=Y,FORTRAN=N

or

CALL SFTRAN MAIN, COMPILER='FTN,SO'

The keyword operands in these examples have been discussed, and their use here is to
override (temporarily) the choice made with the JOB command.

FORTRAN, that are stored in a particular program file. Such elements may have al-
ready been precompiled and saved (unlikely), or they may be special programs not in-
tended for the precompiler (e. g. , obtained elsewhere in FORTRAN).

Consider, for example, the FORTRAN subroutine BESORD. This would probably be
stored in the source library as element BESORD$F, with the $F suffix indicating that it
is written in FORTRAN and is not suitable for the precompiler. (Actually, the precom-
piler would simply output each line of BESORD$F as it received it, without modification.)
Then, assuming that the JOB command has been previously issued, one enters

FORTRAN. - The command FORTRAN is used to compile elements, written in

CALL FORTRAN BESORDSF

After the prompt is received, the relocatable element BESORD$F will exist in the pro-
gram file.

LINES, which may be used to override (temporarily) the choice made with the JOB
com m and.

The command FORTRAN also has the operand keywords COMPILER, LISTING, and

23

COLLECT. - The command COLLECT is used to
execution. Assuming that the JOB command has been
is called MAIN, enter

build an absolute element ready for
issued and that the main program

CALL COLLECT MAIN

to produce absolute element MAIN in the temporary program file TPF$.
is done with SONIC-BOOM. MAIN used as the main-program relocatable element; sub-
programs referenced by MAIN wil l be taken from SONIC-BOOM if they exist.
COLLECT subroutine includes a statement that causes the library W A C * AFORLIJLIB
to be searched in order to satisfy unresolved references. The user must remove this
statement if the FORTRAN V compiler was used to create relocatable elements in the
program file.)

The collection

(The

Other forms of the COLLECT command a re possible, such as

CALL COLLECT MAIN,COMl,COM2, JOBLIB=MY-LIB

which would include block-data subprograms COMl and COM2 from SONIC-BOOM and
would use the program file MY-LIB as an additional JOBLIB. If more than one JOBLIB
name is specified (by using quotes around a string of names separated by commas), these
will be searched in the order given. The absolute program is still known as element
MAIN because MAIN is the first parameter given.

Another form might be

CALL COLLECT MAIN, INCLUDE=MY-LIB.INPUT,SAVEAES=Y

which would use relocatable element INPUT from MY-LIB instead of from SONIC-BOOM
and would save the absolute program by copying it from TPF $. MAIN to SONIC -BOOM.
MAIN. (The user is cautioned that the COLLECT command erases the contents of T P F $
before building the new absolute element there. This is done to prevent inclusion of r e -
locatable elements that might previously have been put into TPF$.)

ticular program file by using the CTS editor. Suppose the element name is, or is to be
SEARCH; then, assuming the JOB command has been issued,' enter

EDITLIB. - The command EDITLIB is used to create o r edit an element of a par-

CALL EDITLIB SEARCH

The usual prompts and messages from the CTS editor will appear. When editing is com-
pleted, the results may be preserved by entering SAVE or REPLACE, as appropriate.

longer wanted from the program file. For example, assuming that the JOB command has
been issued, enter

ERASELIB. - The command ERASELIB is used to remove elements that a re no

CALL ERASELIB SEARCH,INPUT

24

to remove any elements that were produced by issuing the commands EDITLIB, SFTRAN,
FORTRAN, or COLLECT with the element names SEARCH or INPUT.

code produced by the precompiler. It assumes that the element already exists in the pro-
gram file.
name, the user will be informed that an element was not found.) Suppose that prints of
the SFTRAN listings of MAIN and SEARCH a re desired; then, assuming the JOB
command has been issued, enter

LISTINGS. - The command LISTINGS is used to obtain listings of indented SFTRAN

(If this is not the case, perhaps because of an er ror in typing the element

CALL LISTINGS MAIN,SEARCH

This will create a SYMBIONT file for batch printing with a unique name that is decat-
aloged when the print has been completed. This single file will contain listings of both
MAIN and SEARCH, with identifying headings that will appear on each printed page. Note
that the listing elements printed are actually MAIN$L and SEARCH$L but that the $L
suffixes a re not included in the LISTINGS command.

As another example, the command

CALL LISTINGS OUTPUT, LINES=Y

will produce a listing of the SFTRAN-language element OUTPUT with line numbers.
PRINTLIB. - The command PRINTLIB is used to obtain batch prints of source-code

elements in the program file. These will be original (nonindented) SFTRAN codes, cer-
tain FORTRAN source codes that have been stored, o r documentation describing the job
and the programs, For example, assuming that the JOB command has been issued, enter

CALL PRINTLIB MAIN,BESORD$F,SYSDOC

to obtain batch prints of MAIN, BESORD$F, and program documentation SYSDOC. This
will create a temporary SYMBIONT print file that will be printed on the high-speed
printer. This single file will contain copies of MAIN, BESORD$F, and SYSDOC, with
identifying headings that will appear on each printed page. As another example, the
com in and

CALL PRINTLIB INPUT, LINES=Y

will produce a listing of the element INPUT with line numbers.
EDPRINT. - The command EDPRINT is used to print a source-language file or ele-

ment on the high-speed printer with the first byte (column 1) of each line used for printer
control. For example,

CALL EDPRINT 8.

could be used to print the temporary file produced by a FORTRAN program that writes on
U" 8. (However, the EDPRINT command will not work for SYMBIONT files that a r e

25

,,,,,,,I 1 1 1 1 . . . 1.11.1.111, II

produced by using the BRKPT command of the UNIVAC 1100 EXEC system to divert run-
stream output from PRINT $ to a user file.

and/or positional operand evaluation in the CTS command subroutines described. It may
also be used in us,er-developed command subroutines. For purposes of illustration, con-
sider the following command subroutine that implements the command DEMO:

PARAM. - The command PARAM was created specifically to implement keyword

100 CALL PARAM DEMO:VALUl,VALU2,VALU3
110 TYPE 'VALUl=%VALU1%'
120 TYPE 'VALU2=%VALU2%'
130 TYPE 'VALU3=%VALU3%'
140 RETURN

(DEMO is not one of the SFTRAN task-management commands; it is included here only
to illustrate use of the PARAM command.) Suppose subroutine DEMO is executed by
entering

CALL DEMO 1,2,3

When line 100 of DEMO is executed, the values of the variables VALU1, VALU2, and
VALU3 will be set to 1, 2, and 3, respectively, by the PARAM command. Then lines
110, 120, and 130 will cause

VALU 1= 1
VALU2=2
VALU3=3

to be output on the terminal. Notice that the name of the calling subroutine, DEMO, must
appear immediately before the colon in the call to PARAM.

As another example, one might enter

CALL DEMO VALU2=ALPHA,VALU3=BETA

In this case the response will be

VALU1=
VALU2=ALPHA
VALU3=BETA

Since no value was given for VALUl (either by position or by keyword), the default value
is used - in this case a null string. The user is encouraged to t r y this little command
subroutine with other operand values to become more acquainted with the PARAM
command.

alphanumeric, that they begin with a letter, and that they be no longer than eight
char act er s .

words. For example (continuing from the preceding discussion), if one enters

Successful use of the PARAM command requires that the keyword names chosen be

DEFAULT. - The command DEFAULT is used to set default values for operand key-

26

CALL DEFAULT VALU1=14 ,VALU3= 'ABC ,DEF '
CALL DEMO VALU2=ALPHA

the system will respond with

VALU1= 14
VALU2=ALPHA
VALU3=ABC ,DEF

That is, the defaulted values for VALUl and VALU3 are used because they were not sup-
plied in the DEMO command. Default values so specified remain in effect during the en-
t i re terminal session unless they a re changed by subsequent DEFAULT commands with
the same keywords. U s e r s are urged to t ry other combinations of the DEMO and
DEFAULT commands to become better acquainted with the use of the DEFAULT and
PARAM command subroutines.

Comments Concerning Task Management

A final comment about the command subroutines may be useful. Some of them can
be used recursively; that is, up to 10 element names may be entered, in addition to the
keyword operands. Those that cannot a re JOB, PARAM, and DEFAULT (which take no
member name operand), EDlTLIB (for which recursion would be of doubtful value), and
EDPRINT (which can be used to print only one file or element at a time). The DEFAULT
command may include more than one keyword=value field.

Nine other command subroutines a re included in the SFTRAN package:

BLOCKHDR GENTIMEO QUEUEX

FINDNAME GENTIME REQUEUEX

FINDVALUE NAMEMATCH READFILE

These commands a re not designed for direct call by the user. They are called by the
command subroutines already described and hence are a necessary part of the whole
SFTRAN package.

ACQUIRING SFTRAN

The SFTRAN precompiler absolute program, two programs for creating SYMBIONT
files for batch prints, and the task-management command subroutines are contained in a
program file name SFT1100. On the Lewis Research Center's UNIVAC 1100 system,
this file has the qualifier FESSLER and read access is permitted to all users.

To acquire SFTRAN capability, the user should issue the CTS command

COPY,S FESSLER*SFT1100.,

27

I

The result will be that the user 's CTS program file, F, will receive copies of each of the
SFTRAN command subroutines.

new users get started. Listings of a larger SFTRAN program are provided in appendix C
to illustrate good use of the language features.

A brief runstream with a simple SFTRAN program is provided in appendix B to help

SFTRAN PRECOMPILER

The precompiler translates SFTRAN source code to FORTRAN source code. It was
written in SFTRAN and consists of a main program, a BLOCK DATA subprogram, and
nine other subprograms (excluding system -supplied routines). Communication between
these is partly by calling arguments and partly by the two common blocks SFTSET and
SFTCOM.

Precompiler Main Program

All parameters that control the operation of the precompiler are contained in the
common block SFTSET. These a re set at the start of each precompilation by the com -
mand subroutine SFTRAN, which adds appropriate NAMELIST input lines to the
runstream.

Statement analysis and translation is performed in two passes in the main program.
In pass 1, SFTRAN statements in the user 's program a r e recognized and translated to
FORTRAN statements. The precompiler is transparent to non-SFTRAN statements and
these pass through without change. If e r rors a re detected, they a re reported along with
the offending SFTRAN statement. Syntax e r ro r s a r e rarely fatal; pass 1 is nearly always
completed. An indented listing of the user 's SFTRAN program is also produced in pass 1.

A feature of SFTRAN is the use of descriptive names to refer to a block of state-
ments. At the conclusion of pass 1, a check is made to see that the name of each
PROCEDURE block was used at least once in a DO-PROCEDURE statement, and con-
versely. Also, a check is made to see that the name of each DEFINITION block was used
in an INCLUDE statement, and conversely. Then, if no e r ro r s have been detected up to
this point, pass 2 begins.

Pass 2 operates on the translated, all-FORTRAN output from pass 1. Two files a re
read by pass 2: one contains the bulk of the pass 1 translation and the other contains
those statements that came from DEFINITION blocks in the user 's SFTRAN program. In
pass 2, these two files are remerged; INCLUDE statements (which are not translated in
pass 1) are replaced by those statements that came from the DEFINITION block of the

28

same name. Another function of pass 2 is to append a list of statement numbers to the
ASSIGNED GO TO statements generated in pass 1 at the end of each PROCEDURE block.

Precompiler Subprograms

INOUT. - AI1 statement input and output occurs in subroutine INOUT, which has four
Entry point INPUT is for input of both SFTRAN and FORTRAN statements. entry points.

Output of SFTRAN statements is by entry point SFOUT, output of FORTRAN statements
is by entry point F40UT, and output of e r ror statements is by entry point ERROUT.
Statement line numbers, concatenation of input lines in the case of multiline statements,
and generation of continuation lines on output are taken care of in INOUT. In this way,
system -dependent details are confined to one subprogram.

SCAN. - The statement scanning functions FIND and LOCATE are done in logical-
function subprogram SCAN.
current statement.
character, for a specified character. SCAN is also an entry point name; this entry
causes scanning to begin (or resume) at a particular byte (card column) of the current
st at em ent .

FIND tests whether o r not a given string next occurs in the
LOCATE searches the current statement, starting with the current

An important part of SCAN is a test to see if there a re any more nonblank characters
in the current statement beyond the current string. This test is performed at each call to
SCAN and whenever a successful call to FIND o r LOCATE occurs. If more characters
are found, the position and value of the first one are obtained; if only blank characters
(spaces) remain, these are eliminated by a reduction of the statement-length count.

numbers to digit strings, and conversely. When a character string is decoded, the value
of logical function DCODE is . FALSE. if any decoding e r ro r s were encountered. (One of
the uses of DCODE is to determine whether or not a string of characters represents a
literal integer constant.)

sages, and HALT, for fatal e r ro r messages. In this subroutine, the e r ro r message is
received in the argument string as a parenthetical expression. These parentheses are
located and the e r ro r message is extracted and appended to *ERROR*, or *FATAL
ERROR*, as the case may be. This complete message is then announced, together with
the current SFTRAN statement responsible for the message, by calls to ERROUT.

parenthetical expression begins at a specified byte (or is preceded by only blank char-
acters). If left and right parentheses are found, their byte positions are returned.

NCODE and DCODE. - Subprograms NCODE and DCODE convert internal integer

ERROR. - Subroutine ERROR has two entry points: ERROR, for nonfatal e r ror mes-

PARENS. - Logical-function subprogram PARENS scans a string t o see if a complete

29

ADDBUF. - Subroutine ADDBUF adds a string of characters to the output buffer used
for generating FORTRAN statements and increments the count of the total number of char-
acters in the buffer.

Character -Manipulating Routines

Two character-manipulating subprograms, which a r e not part of the FORTRAN
library, a r e used in the SFTRAN precompiler. These give SFTRAN and FORTRAN pro-
grams the ability to deal with imbedded strings of characters.

F4MVC(A, I, B, J , N). - Subroutine F4MVC moves N characters from string A to
string B, starting with the Ith character of A, which replaces the Jth character of B.
I, J, and N must all be greater than zero.

F4CLC(A, I, B, J ,N) . - Logical-function subprogram F4CLC compares N characters
of string A with N characters of string B, starting with the Ith character of A, which is
compared to the Jth character of B, etc. I, J , and N must all be greater than zero. A
.TRUE. value is returned only when a match is obtained for all N characters.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, January 24, 1978,
505-01.

30

APPENDIX A

SUMMARY OF TASK-MANAGEMENT COMMANDS

In summarizing the task-management commands, the following notation is used:
command names, keywords, and formal operands are in upper case and functional oper -
ands a re in lower case. Also, several metasymbols are used:

[I
{ I
I
. . .

C o m m a n d

C O L L E C T

D E F A U L T

E D 1 TL I B

E D P R I N T

E R A S E L I B

F O R T RAN

J O B

L I S T I N G S

P A R A M

P R I N TL I B

S F T R A N

delimits optional operand fields

delimits operand alternatives

separates operand alternatives

indicates that the preceding field may be repeated (up to 9 t imes)

O p e r a n d s

e l e m e n t n a m e [, . . . I
[, J O B L I B = f i l e n a m e (s) t o be u s e d as a l i b r a r y]
[, I N C L U D E = e l e m e n t (s) f r o m o t h e r f i l e s t o be i n c l u d e d]
[, S A V E A B S = { Y I N)]

[k e y w o r d = v a l u e I [, . . . I
e l e m e n t name

(f i l e n a m e) I (f i l e a n d e l e m e n t name)

e l e m e n t n a m e [, . . .]
e l e m e n t name 1,. . .]
[r C O M P I L E R = ' c o m p i l e r n a m e , o p t i o n s ']
[, L I S T I N G = (Y I N } 1 [, L I N E S / (Y I N) I
[j o b n a m e]
[, F O R T R A N = (Y N)] [, N U M B E R = (Y I N)] [, S T R I P = (Y I N)]
[, O F F L I N E = { Y I N)] [, L I S T I N G = (Y I N) I [, L I N E S = (Y I N)]
[, C O M P I L E R = ' c o m p i l e r n a m e , o p t i o n s ']
[, R E A D K E Y = r e a d - k e y s t r i n g]
[r W R I T E K E Y = w r i t e - k e y s t r i n g]

e l e m e n t name [,.. .]
name of c a l l i n g s u b r o u t i n e :
[K E Y W O R D] [, K E Y W O R D] , . . .

e l e m e n t name [r . . . I

e l e m e n t name [r . . . I

[r L I N E S S C Y I N I]

, L I N E S =CY I N } 1

[, F O R T R A N = { Y N) 1 [, N U M B E R = { Y I N I 1 [, S T R I P = CY I N) 1

[, ~ ~ ~ ~ ~ ~ ~ ~ = ' c o m p i l e r n a m e , o p t i o n s ']
[, O F F L I N E = { Y I N)] [r L I S T I N G = C Y I N)] [r L I N E S = C Y I N I I

31

APPENDIX B

SAMPLE RUNSTREAM

The following runstream is an example of how the SFTRAN system is used at a ter-
minal. The usual LOGON procedure and the procedure described previously for acquir -
ing SFTRAN are assumed to have already been completed. U s e r -entered lines are dis -
played in lower case and system responses are displayed in upper case.

->ca l l job learn
NEW F I L E LEARN ASSIGNED
->ca l l e d i t l i b t r y l
NEW ELEMENT T R Y l OPENED
->number 1 0 0 r l O O n

> c t h i s i s my f i rs t t r y a t s f t r a n programming. > i n c l u d e (p r e l i m i n a r i e s)
> c > do w i t h
> read (5 , 1 ,done=end) s t r i n g

u n t i l (done . o r . s t r i n g (1) . eq .b l ank)
w r i t e (6 , 2) s t r i n g

> > > end > s t o p
> c > 1 f o r m a t (1 0 a 4) > 2 f o r m a t (' you s a i d : ' , 1 0 a 4) > d e f i n i t i o n (p r e l i m i n a r i e s) > l og ica l done > d i m e n s i o n s t r i n g (1 0) > da ta b l a n k / ' ' / > end > end
> *save
- > c a l l s f t r a n t r y 1
BEGINNING T R Y l
FURPUR 2 7 R 2 R L 7 2 R 1 0 4 / 0 7 / 7 7 1 3 : 4 8 : 1 2
FURPUR 2 7 R 2 R L 7 2 R 1 0 4 / 0 7 / 7 7 1 3 : 4 8 : 2 0
COMPILING. . .
FURPUR 2 7 R 2 R L 7 2 R 1 0 4 / 0 7 / 7 7 1 3 : 4 8 : 4 7

2 0 END FTN 2 2 IBANK 3 4 DBANK
- > c a l l co l lec t t ryl ,saveabs=y
I N EXEC MODE
FURPUR 2 7 R 2 R L 7 2 R 1 0 4 / 0 7 / 7 7 1 3 : 5 2 : 35

1 REL

1 ABS
->xq t l e a r n . t r y 1
> 1 2 3 4 5 6

YOU SAID 1 2 3 4 5 6
>abc .. . xyz

YOU SAID ABC ... XYZ
>

->ca l l l i s t i n g s t r y l

T h e indented l i s t i n g of SFTRAN code produced by t h e l a s t
u s e r c o m m a n d i s as f o l l o w s :

32

LEARN.TRY~SL 07 APR 77 13 :48 :13

C.. ... THIS IS MY FIRST TRY AT SFTRAN PROGRAMMING.
C

INCLUDE (PRELIMINARIES)

DO WITH

UNTIL (DONE .OR. STRING (1) .EQ .BLANK)

END
STOP

READ (5 , 1 , DONE=END) STRING

WRITE (6 , 2) STRING

C
1 FORMAT (10A4)
2 FORMAT (I YOU SAID: ',10A4)

DEFINITION (PRELIMINARIES)
LOGICAL DONE
DIMENSION STRING (10)
DATA BLANK / ' I /

END
END

33

APPENDIX C

SFTRAN EXAMPLES

The following listings are intended to illustrate the use of SFTRAN coding. The
first example is an indented SFTRAN program listing as produced by LISTINGS. It con-
tains all of the SFTRAN structures currently available and is in good "top-down" form.
Next is a portion of the same demonstration program as it would appear when
NUMBER=Y is specified. The last example is the FORTRAN code generated by the pre-
compiler at the same time it produced the numbered SFTRAN listing.

The numbered examples were produced with LINES=Y to illustrate the correspond-
ence between SFTRAN output and FORTRAN output numbering. Not shown is the degree
to which these correspond to the input line numbers. The general rule can be stated
quite simply: the SFTRAN precompiler makes every effort to give output lines index
numbers that a re 100 times the input line number; when additional output lines must be
generated, their numbers are incremented by 1 (cf. lines 10800-10804 of the example
FORTRAN listing). The result is that, although generally the programmer does not see
his line numbers, if an e r ror message re fers to some specific line number, he knows
exactly where (in the input element) it can be found.

One exception to the rule just mentioned is found in lines that have been moved as a
result of the use of INCLUDE-DEFI"1ON statements. The starting index number of a
moved block of statements will be 100 times the line number of the INCLUDE statement
they replace.

34

Example 1

UNIVACSFTRAN.DEMOSL 1 4 MAR 77 22:12:00 PAGE 1 OF 4

C.....PROGRAM T O DEMONSTRATE SFTRAN CODING.

C T H I S PROGRAM CALCULATES MOLECULAR WEIGHT FOR A
C GIVEN MOLECULAR FORMULA.

INCLUDE (TYPE AND DATA STATEMENTS)

C.MAIN FLOW:

DO WITH
DO (I N I T I A L I Z E FOR NEW FORMULA)
READ (5 , 5 0 0 , DONE=END) FORMLA

DO UPJTIL (ERROR .OR. TYPE .EO. 0)
U N T I L (DONE)

DO (IDENTIFY NEXT BYTE TO DETEFJIINE PE?OCESSING TYPE)
DO CASE (T Y P E . 3) . .
CASE 1

DO (PROCESS NEPJ ELEKEPJT)

DO (B E S I N NEW RADICAL)

DO (END CURRENT RADICAL)

CASE 2

CASE 3

END
END
I F (.NOT .ERROR) THEN

I F (LEVEL. EQ . 0) THEN

E L S E

END

P’RITE (6 , 6 0 0) MOLWT

WRITE (6 , 6 0 1)

END
END
STOP

C.MAIN PROCEDURES:

PROCEDURE (I D E N T I F Y NEXT BYTE TO DETERMINE PROCESSING TYPE)
DO (GET NEXT BYTE FROM FORMULA)
TYPE=1
I F (BYTE.EQ.LPAREN) TYPE=2
I F (BYTE .EQ .RPAREN) TYPE=3
I F (BYTE. EQ . SPACE) TYPE=O
NEXT=NEXT+l

END

PROCEDURE (PROCESS NEW ELEMENT)
DO (ASSEMBLE ELEMENT SYMBOL)
DO (F I N D MATCHING ELEMENT I N TABLE)
I F (FOUND) THEN

DO (READ NUMBER O F ATOMS/RADICALS)

35

UNIVACSFTRAN.DEMO$L 1 4 MAR 7 7 22:12:00 PAGE 2 O F 4

IF (LEVEL. EQ . 0) THEN

ELSE

END

MOLWT=MOLWT+FLOAT (N) *ATWT (ATNO)

RADWT (LEVEL) =RADWT (LEVEL) +FLOAT (N) *ATWT (ATNO)

END
END

PROCEDURE (BEGIN NEW RADICAL)
LEVEL=LEVEL+l
I F (LEVEL. GT . LMAX) THEN

ERROR=. TRUE.
WRITE (6 , 6 0 2)

RADWT (LEVEL) =O .o
ELSE

END
END

PROCEDURE (END CURRENT RADICAL)
LEVEL=LEVEL-l
I F (LEVEL.GE.0) THEN

DO (READ NUMBER OF ATOMS/RADICALS)
I F (LEVEL.GT.0) THEN

ELSE

END

ERROR=. TRUE.
WRITE (6 , 6 0 3)

RADWT (LEVEL) =FtADWT (LEVEL) +FLOAT (N) *RADWT (L E V E L + l)

MOLWT=MOLWT+FLOAT (N) *RADWT (1)

ELSE

END
END

C.. . . .MORE DETAILS:

PROCEDURE (I N I T I A L I Z E FOR NEW FORMULA)
MOLWT=O . 0
LEVEL=O
NEXT=1
ERROR=. FALSE.

END

PROCEDURE (ASSEMBLE ELEMENT SYMBOL)
DO (PUT F I R S T BYTE INTO SYMBOL)
DO (GET NEXT BYTE FROM FORMULA)
I F (BYTE. GE . SMALLA .AND. BYTE. LE. SMALLZ) THEN

ELSE

END
DO (PUT SECOND BYTE INTO SYMBOL)

NEXT=NEXT+ 1

BYTE=SPACE

36

UNIVACSFTRAN.DEMO$L 14 MAR 77 22:12:00 PAGE 3 OF 4

..

END

PROCEDURE (FIND MATCHING ELEMENT IN TABLE)
DO FOR ATNO=l,NELEMS

FOUND=SYMBOL.EQ.ELEMNT(ATNO)
<--IF (FOUND) EXIT (ATNO)
OTHERWISE

ERROR=. TRUE.
WRITE (6,604) SYMBOL

END
END

PROCEDURE (READ NUMBER OF ATOMS/RADICALS)
N= 0
DO WITH

WHILE (BYTE.GE.ZER0 .AND. BYTE.LE.NINE)
DO (GET NEXT BYTE FROM FORMULA)

N=10*N+ (BYTE-ZERO)
NEXT=NEXT+l

END
N=MAXO (N, 1)

END

... NOTE -- F4MVC (A,I,B,J,N) IS AN EXTERNAL SUBROUTINE WHICH MOVES
N CHARACTERS FROM STRING A TO STRIrJG B, STARTING WITH
THE I-TH BYTE OF A WHICH REPLACES THE J-TH BYTE OF B.

PROCEDURE (GET NEXT BYTE FROM FORMULA)

END
CALL F4MVC (FORMLA,NEXT,BYTE ,4 ,I)

PROCEDURE (PUT FIRST BYTE INTO SYMBOL)
CALL F4MVC (BYTE, 4, SYMBOL, 1,1)

END

PROCEDURE (PUT SECOND BYTE INTO SYMBOL)

END
CALL F4MVC (BYTE, 4, SYMBOL, 2 ,1)

L.....MISCELLANEOUS:

500 FORMAT (19A4,Al)
600 FORMAT (I MOLECULAR WEIGHT =',F10.3)
601 FORMAT (I ERROR: PARENTHESES DO NOT MATCH')
602 FORMAT (ERROR: TOO MANY NESTED RADICALS I)

603 FORMAT (I ERROR: TOO MANY RIGHT PARENTHESES')
604 FORMAT (ERROR: UNKNOWN ELEMENT = ,A2)

DEFINITION (TYPE AND DATA STATEMENTS)
IMPLICIT INTEGER (A-2)
REAL ATWT,MOLWT,RADWT

37

UNIVACSFT5WA.DEMO$L 1 4 MAR 7 7 2 2 : 1 2 : 0 0 PAGE 4 OF 4

LOGICAL DONE , ERROR , FOUND
DIMENS I O N ATWT (11 0) , ELEMNT (1 1 0) , FORMLA (2 0) , RADWT (10)

DATA SPACE , LPAREN , RPAREN , SMALLA , SMALLZ , ZERO , N I N E
* / 3 2 1 4 0 I 4 1 I 9 7 , 1 2 2 , 4 8 , 5 7 /

DATA LMAX,NELEMS,FORMLA,SYMBOL/10,20,21X' '/

DATA ELEMNT (1) ,

* ELEMNT(3) ,
* ELEMNT (2) ,

* ELEMNT (4) ,
* ELEMNT (5) ,

* ELEMNT (7) ,
* ELEMNT(8) ,
* ELEMNT (9) ,

ELEMt?T (10) ,
* ELEMNT (1 2) ,
* ELEKIJT (1 3) ,
* ELEMNT (1 4) ,
* ELEMNT (15) ,

ELEMNT (1 6) , * ELEMNT (1 7) ,
* ELEMNT (1 8) ,

ELEMNT (1 9) , * ELEMNT (2 0) ,

* ELEMNT (6) ,

*
DATA ELEMNT (11) ,

*

*

END

ATWT(1) / 'H', 1 . 0 0 7 9 7 / r

ATWT(2) / 'He', 4 . 0 0 2 6 / I

ATWT(3) / ' L i ' f 6 . 9 3 9 / I
ATWT(4) / ' B e ' , 9 . 0 1 2 2 / r

ATWT(5) / 'B', 1 0 . 8 1 1 /,
ATFJT(6) / ' C ' , 1 2 . 0 1 1 1 5 /,
ATWT(7) / I N ' , 1 4 . 0 0 6 7 / I

ATWT(8) / ' O ' r 1 5 - 9 9 9 4 / r

ATWT(9) / I F ' , 1 8 . 9 9 8 4 / r

A T W T (~ O) / ' N e ' , 2 0 . 1 8 3 /
ATWT(11) / ' N a ' , 2 2 . 9 8 9 8 / r

ATWT(13) / ' A l ' , 2 6 . 9 8 1 5 /,
ATWT(14) / ' S i ' , 2 8 . 0 8 6 /,

ATWT(12) / 'Mg', 2 4 . 3 1 2 /,

ATWT(15) / 'P', 3 0 - 9 7 3 8 / r

~ T w T (l - 6) / ' S I , 3 2 . 0 6 4 / r

~ T w T (l - 7) / 'Cl', 3 5 . 4 5 3 / r

A T W T (~ ~) / 'K't 3 9 . 1 0 2 / I
~ T m (1 8) / 'Ar', 3 9 . 9 4 8 /,

ATWT(20) / 'Ca ' , 4 0 . 0 8 /

END

38

Example 2

A part of SFTRAN listing of DEMO produced with NUMBER=Y is as follows:

0 0 0 8 7 0 0
0 0 0 8 8 0 0
0 0 0 8 9 0 0
0 0 0 9 0 0 0
0 0 0 9 1 0 0
0 0 0 9 2 0 0
0 0 0 9 3 0 0
0 0 0 9 4 0 0
0 0 0 9 5 0 0
0 0 0 9 6 0 0
0 0 0 9 7 0 0
0 0 0 9 8 0 0
0 0 0 9 9 0 0
001000@
0 0 1 0 1 0 0
0 0 1 0 2 0 0
0 0 1 0 3 0 0
0 0 1 0 4 0 0
0 0 1 0 5 0 0
0 0 1 0 6 0 0
0 0 1 0 7 0 0
0 0 1 0 8 0 0
0 0 1 0 9 0 0
0011000
0011100
00112 00
0 0 1 1 3 0 0
0011400
00115 00
0 0 1 1 6 0 0
0 0 1 1 7 0 0
0 0 1 1 8 0 0
0 0 1 1 9 0 0
0 0 1 2 0 0 0
0 0 1 2 1 0 0
0 0 1 2 2 0 0
0 0 1 2 3 0 0
0 0 1 2 4 0 0
0 0 1 2 5 0 0
0 0 1 2 6 0 0

C.....MORE DETAILS:

3 0 0 0 2 PROCEDUm (INITIALIZE FOR NEW FORMULA)
30002 MOLWT=O . 0

LEVEL=O
NEXT=1
ERROR=. FALSE.

1 0 0 0 8 END

30008 PROCEDURE (ASSEMBLE ELEMENT SYMBOL)
30008 DO (PUT FIRST BYTE INTO SYMBOL)
2 0 0 3 7 DO (GET NEXT BYTE FROM FORMULA)
2 0 0 3 8 IF (BYTE. GE . SMALLA .AND. BYTE. LE. SMALL2) THEN

2 0 0 3 9 ELSE
2 0 0 3 9 BYTE=SPACE
2 0 0 4 0 END
2 0 0 4 0 DO (PUT SECOND BYTE INTO SYMBOL)
2 0 0 4 1 END

NEXT=NEXT+1

30009 PROCEDURE (FIND MATCHING ELEMENT IN TABLE)
30009 DO FOR ATNO=l,NELEMS

1 0 0 0 9 <--IF (FOUND) EXIT (ATNO)
2 0 0 4 4 OTHERWISE
2 0 0 4 4 ERROR=. TRUE.

20042 END
2 0 0 4 5 END

2 0 0 4 3 FOUND=SYMBOL.EQ.ELEMNT(ATNO)

WRITE (6 , 6 0 4) SYMBOL

3 0 0 1 0 PROCEDURE (READ NUMBER OF ATOMS/RADICALS)
3 0 0 1 0 N= 0
2 0 0 4 6 DO WITH
2 0 0 4 6 DO (GET NEXT BYTE FROM FORMULA)
2 0 0 4 8 WHILE (BYTE.GE.ZER0 .AND. BYTE.LE.NINE)

N=10 *N+ (BYTE-ZERO)
NEXT=NEXT+l

10010 END
2 0 0 4 7 N=MAXO (N, 1)
10011 END

39

Example 3

A part of FORTRAN code produced from DEMO with NUMBER-Y is as follows:

C.....MORE DETAILS:

C PROCEDURE! (INITIALIZE FOR NEW FORMULA)
30002 MOLWT=O.O

LEVEL=O
NEXT=l
ERROR=.FALSE.

10008 GO TO NPR002, (20003)

C PROCEDURE (ASSEMBLE ELEMENT SYMBOL)
30008 ASSIGN 20037 TO NPROll

20037 ASSIGN 20038 TO NPR007

20038 IF (.NOT. (BYTE.GE.SMALLA .AND. BYTE.LE.SMALLZ)) GO TO 20039

GO TO 30011

GO TO 30007

NEXT=NEXT+I
GO TO 20040

20039 BYTE=SPACE
20040 ASSIGN 20041 TO NPROl2

20041 GO TO NPR008, (20023)

C PROCEDURE (FIND MATCHING ELEMENT IN TABLE)
30009 ATNO=l

GO TO 30012

N20042=NELEMS
GO TO 20043

20042 ATNO=ATNO+l
IF ((N20042-ATNO) .LT.O) GO TO 20044

2 o o 4 3 FOUND=SYMBOL . EQ . ELEMNT (ATNO)
10009 IF (FOUND) GO TO 20045

20044 ERROR= .TRUE.

20045 GO TO NPR009, (20024)

GO TO 20042

WRITE (6 ,6 0 4) SYMBOL

C PROCEDURE (READ NUMBER OF ATOMS/RADICALS)
30010 N=O
20046 ASSIGN 20048 TO NPR007

20048 IF (.NOT. (BYTE.GE.ZER0 .AND. BYTE.LE.NINE)) GO TO 20047
GO TO 30007

~ = l 0 *N+ (BYTE - ZERO)
NEXT=NEXT+1

10010 GO TO 20046
20047 N=MAXO(N,l)
10011 GO TO NPRO10, (20027,20034)

8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
9701
9800
9801
9900
10000
10 10 0
10200
10400
10401
10500
10600
10700
10800
10801
10802
10803
10804
10900
11000
11100
11200
11300
11500
11600
11700
11800
12000
12001
12 10 0
12200
12300
12400
12500
12600

40

REFERENCES

1. SPERRY UNNAC 1100 Series, FORTRAN (ASCII), Programmer Reference.
UP -8244, Rev. 1, Sperry Rand Corp. , 1976.

2. SPERRY UNNAC 1100 Series, Conversational Time Sharing (CTS) System, Pro-
grammer Reference. UP -7940, Rev. 3, Sperry Rand Corp., 1976.

41

National Aeronautids and
Space Administration

Washington, D.C.
20546
Official Business
Penalty for Private Use, $300

13 1 1U,G, 032778 S00903DS DEPT O F THE A I E FOBCE
AI! WEAPONS LAEOBATOBY
ATTN: T E C H N I C A L LIBBABY {SUL)
K I R T L A N D A P R NPI 87117

THIRD-CLASS BULK RATE. Postage and Fees Paid
National Aeronautics and
Space Administration
NASA451

,
__ . .

1

\

., '/

i;

1;~ , . ,
Vndeliverable (Section 1'$8 , ru=am---....

r
Postal Manual) Do Not Return

. j ,
i -

. .. I /
r . .

.

